
_ i!i

)i

!,

NASA Technical Paper 3470

Multiple-Scattering Model for Inclusive
Production in Heavy Ion Collisions

Proton

Francis A. Cucinotta

Langley Research Center • Hampton, Virginia

National Aeronautics and Space Administration
Langley Research Center • Hampton, Virginia 23681-0001

November 1994



• ,_i_i,_

11

This pnblication is available from the following sources:

NASA Center for AeroSpace Information

800 Elkridge Landing Road

Linthicum Heights, MD 21090-2934

(301) 621-0390

National Technical Information Service (NTIS)

5285 Port Royal Road

Springfield, VA 22161-2171

(703) 487-4650



Abstract

A formalism is developed for evaluating the momentum distribution

for proton production in nuclear abrasion during heavy ion collisions

using the Glauber multiple-scattering series. Several models for the one-

body density matri¢ of nuclei are considered for performing numerical

calculations. Calculations for the momentum distribution of protons
in abrasion are compared with ecperimental data for inclusive proton
production.

Introduction

The prediction of the secondary distribution of

particles produced in heavy ion collisions is re-

quired for performing cosmic-ray transport calcula-
tions (ref. 1). The fragmentation cross sections in

heavy ion reactions may be described in the abrasion-
ablation models in which abrasion describes the

knockout of nucleons and clusters during the projec-
tile and target overlap and ablation describe the de-

excitation of the projectile or target remnants. The
abrasion cross sections are typically described us-

ing a geometric model (ref. 2) or semiclassical meth-

ods based on the Glauber or eikonal approximation
(refs. 3-5).

In this report we consider the use of the Glauber

multiple-scattering model for formulating the pro-
ton momentum distribution from abrasion. This for-

malism will be useful for obtaining both a better
understanding of the physics of nuclear abrasion and

estimates of secondary yields of light particles from
direct processes. We will also relate the inclusive nu-

cleon scattering observables to the internal nuclear
density matrix that differs from the intranuclear cas-

cade (ref. 6) or hydrodynamic model (ref. 7) descrip-

tions of these observables. The calculations may then
provide tests on nuclear structure calculations for the

internal momentum distribution when all secondary
nucleon mechanisms are considered. The same for-

malism describes proton or neutron production from

nuclear abrasiom however, because of increased mul-

tiplicity for evaporation neutrons as compared with

that of protons, we present calculations for proton
production in this report.

Several mechanisms for proton (or neutron) pro-

duction occur in heavy ion collisions. Figure I il-
lustrates the mechanisms for proton production in
nucleon-induced reactions. The contributions from

the scattering of the incident nucleon from the tar-

get ground and low-lying excited states are close to

the beam energy. Below the beam energy we find,

first, the quasi-elastic peak where the projectile has
knocked target nucleons into continuum states, and

this is followed by the nucleon excitation peak which
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Figure 1. Schematic of mechanisms of proton production in

nucleon-induced reactions.

at intermediate energies is dominated by the delta

resonance. The nucleon excitation peak is observed

to grow in importance with increasing beam energy
and with the production angle of nucleons. For inci-

dent neutrons (protons), a quasi-elastic peak of pro-

tons (neutrons) is observed because of charge ex-
change. At lower energies, the two contributions to

proton production are (1) the evaporated particles

from the deexcitation of the target nucleus and (2) a
higher energy contribution from the knockout or cas-

cade particles and the multiple scattering of such par-
ticles inside the target. The cascade particles extend

out to several hundred MeV because of the multiple
scattering and the internal Fermi motion of the tar-

get, and these particles will overlap with the quasi-

elastic peak at forward angles if the beam energy is
not too high.
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For heavy ion reactions, many of the same mech-
anisms will contribute to proton production however

modified, because both the projectile and target nu-
clei are a source of evaporation and knockout pro-
tons. An illustration of the contributions to proton
production in heavy ion collisions is shown in fig-
ure 2. The internal Fermi motion of the projectile
allows secondary protons (or neutrons) to be pro-
duced at appreciably higher energies than the beam.

The nucleon excitation peak will still appear in the
intermediate region between the projectile and tar-
get. One important difference between the nucleon-

induced and heavy-ion-induced proton production is
the possibility of coherence effects which may lead to
stronger multiple-scattering contributions for heavy
ion reactions. In this report we will describe the cal-
culation of proton spectra from the knockout mecha-
nism. The contributions from nucleon excitation and
evaporation will be described elsewhere.
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Figure 2. Schematic of mechanisms of proton production in

heavy ion reactions.
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A
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mass number

impact parameter, fm

speed of light, m/see
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X
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p(r, r')

(y

X

_2

energy, MeV

fragment

prefragment

scattering amplitude, fm

nucleon-nucleon scattering
amplitude

imaginary part of function

initial wave number, fm -1

wave number of knockouts, fm -1

mass, MeV/c 2

nucleon mass, MeV/c 2

single-collision term

number of abraded nucleons

momentum distribution

projectile

momentum, MeV/c

defined in equation (13)

momentum transfer, fm -1

internal nuclear coordinate vector

separation energy, MeV

transverse part of r vector

target

kinetic energy of prefragment, MeV

time, sec

final target state

profile function

Dirac delta function

defined in equation (20)

defined in equation (22)

one-body density matrix, fm -3

one-body density, fm -3

cross section, mb

eikonal phase

eikonal inelastic collision term



Abrasion Theory

In the Glauber model the scattering operator for nucleus-nucleus collisions is written as

f = -_ d2beiq'bF(b) (1)

(refs. 8 and 9) where K is the projectile-target relative wave number, b is the impact parameter, q is the

momentum transfer, and the profile function representing the multiple-scattering series at high energies is

r(b) = 1 - 1][1- r.j(b-s_-sj)]
a,j

(2)

where a and j label the target and projectile constituents, respectively. In equation (2), Faj is the two-body

profile function with the internal coordinate having components r -- (s, z).

The scattering amplitude of equation (1) is related to the production cross section for a projectile nucleon
from the abrasion process by

dkd = (2.)21f E.,  2qd b  Ue .(b_b,) i_

/ _.1-I2[ dkj ] {TP[Ft(b,)iXF,kj){kjF,X]F(b)[PT}× = L(2_)3J (3)

where kj denotes the wave numbers of the abraded nucleons, F* denotes the prefragment (with AF, = Ap-n),
and we have inserted initial and final states in equation (3).

The state dependence of the final target energy prevents closure on these states from being automatic in

equation (3), although when energy conservation is not considered it is made outright (ref. 3). If we consider
the change in energy of the target from the collision

ET -- EX =_ ET _ V/(PT _ q)2 + M 2

=E T i-- 1+ E_ (4)

where M T and M X are the mass of the target in the initial and final states, respectively, we expect that

performing closure on [X} will be valid for sufficiently large values of ET. In proceeding with closure on the
final target states, we now write

do- 1 / d2b ' e iq'(b-b') (b, b', k, q, EF, ) (5)dk -- (27r) 2 dEF* d2q d2b o-n

where we define

°-n(b, bt, kj, q, EF*)= (TI = L(2_)3J

× {pitt (b')[F*kj){kjF* [F(b)[P} } IT} (6)

3
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In order to consider the energy-conserving delta function in equation (6), we introduce the Fourier transform
pair

an(t) --f dEe iEtcrn(E) (z)
J

and

In the projectile rest frame we have

an(E) = [ dt eiEto, n
G (t) (8)

j-1 2raN (9)

where Sn is the separation energy and TF, is the recoil energy of the prefragment, including any excitation

energy of the prefragments. We next go into temporal space in order to consider the dkj integrals in equation (6)
and thus rewrite equation (9) as

Ei_ EI____ __ ] k_ (10)

j-2 2raN

From equations (6) and (7) by using equation (10), we find

[ dkj ]e_i_# .' t
_n(t) = <T I [(2__)3j

x (P[rt(b')[F*kj)<F*kjfr(b)[p)}[T) (11)

In order to simplify equation (11), we first factor the profile function into projectile participant and spectator
terms as

Ap n

r(b) = 1 - I-[ Ql( b - sl) I] Qj(b - sj) (12)
l=n+l j=l

where
AT

QJ : l--i (1 - Fc_j) (13)

In the abrasion model the orbits of the prefragments are assumed to be nearly the same as those of the

projectile. This is consistent with the use of the impulse and frozen nucleus approximations at high energies.

A completely factored form in the participant and spectator coordinates is assumed for the projectile wave
function

IP) = IF)lCn) (14)

where IF) and ICn) are the wave functions of the core (spectators) and of the knockouts (spectations),

respectively. The antisymmeterization is ignored in equation (14), which should be accurate if the mass of

F is much larger than the knockouts. Antisymmeterization in the subsystems of IF) and ]¢n) may still be

included. By using plane-wave states for Ikj) and substituting equations (12) and (14) into equation (11), we
find that

ar,.-'ik.XlQI(b, s/l)Q(b - Sl)
l l

4

× ._2:2[/(_kj3dr. dr}eikjxje-i_'/2mNQJ(b'-sj) Qj(b-sj)J¢n(rl, ...,rn)¢tn(r_,... ,r_n) },T)
(15)
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t Using the coherent approximation for the target wave function in the intermediate stateswhere xj =- rj - rj.

and the independent particle model for the fragment wave function leads to

an(t) = ( AJ I79Ap-n(b' b_) An-l (b' bt' t) dNldk (16)

where the function P(b, b _) describes the projectile spectators as given by

PAp-n(b, b t) = (TFJ II Q_ (b'-s_)]F*)(F*] II Q/(b- sl)]FT )
l 1

(17)

We next perform closure on the prefragment states in equation (17) because we do not consider coincidences
with individual states. After closure we find that

pAp (b, b') ----(TF II-I Q_ ( bt- s/) Ql (b - sl)IFT}
l

(18)

In equation (16) we have defined

dN1 1 ,
dk - (2_) 3 / dr dr eik'xp(r,r')Q] (b' - s t) Ql(b -- s) (19)

where p(r,r t) is the one-body density matrix of the projectile given by p(r,r') = ¢(r)¢t(rt). Next, from

equation (15), after evaluation of the integrals over kj for j > 2, we find

"[ ;.)f H dr' I'mN'_3/2 --mNx2/2it [An-l(b, bt, t) = iT[ drj J_it) e p_rj,r
dj 2

×Qj(b'-s})Qj(b-sj)]lT) (20)

In energy space,

An-1 (b, bt, TF*, k) = ITI/fl[drjdr}p(rj,r})QJ(b'-s})Qj(b-sj)]
j=2

m N ( 1 "_3(n-1)/2 _[n3.(1-1)/2] -1
X --2--\_/I _ J_lOn-1)/2]-l(_n-lXn-1)lT)

_n-1

where J(m1) is the cylindrical Bessel function of the first kind of order m and where

(21)

[ k2_n-1 = 2ran TF* + 2m---N -- s_ - (ST - Ex)] (22)

and

I n 2
Xn--1 = E Xj

j=2

(23)
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For n = 1, we have A0 = 6(TF*). If we assume forward-peaked density matrices (about _ = 0), a small

argument expansion of the Bessel functions can be developed (refs. 10 and 11) that results in

k2An-l(b, bt, TF*,k)_ Cn-1 TF* + 2m---_ - & - (ET - Ex)] _-_

× A]Z-l (b, b,, _n-1 "]_j q- O(¢ 4x4) (24)

where, for example, C1 = 1, C2 = 7r/4, C3 = _r/105, and C4 = 7c2/240.

The nucleon momentum distribution from abrasion then takes the form

da _ v,{Ap'] 1 f d 2 d 2b d 2b I
dk _n \ n ] _ J q

dN1
f dTF. An_ 1 (b, b', TF.x dk-

eiq'(b-b') 7)Ap-n(b, b')

,k) (25)

If

we may approximate equation (25) as

(26)

dcr
_n (AP)f ( ) dN 1 /dTF, An_I(b, TF,,k).._ d2b T)Ap-n bdk n (27)

The result of equation (27) suggests that for Ap >> 1, the momentum dependence of higher production terms

(n > 1) should be similar to the leading-order terms as described in the appendix. This supports the success

of the hard-scattering model of Hatch and Koonin (ref. 12) where only the single-scattering mechanism was

used to predict the shape of the inclusive proton distribution in heavy ion collisions. The model developed

herein differs from the hard-scattering model by our use of the target closure approximation in which the effects

of smearing of the secondary momentum from the target knockouts are not considered but are replaced by

averages represented by the target density and by using only on-shell two-body amplitudes. Also, the Glauber

model has a much fuller multiple-scattering structure than the hard-scattering model.

In order to include the effects of final-state interactions (FSI) of the nucleon knockouts, we use the eikonal

model described in reference 11 in which the plane waves are replaced by the distorted waves for the nucleon-

projectile recoil interaction evaluated at the relative energy between the knockout and recoil. Modifying
equation (19) as in reference 11 gives

dN1 _ 1 fdk (27c)3 dr dr' eik'x p(r, r/)e -2ImX(-)(y) Q_(b' - s') Ol(b - s) (28)

where X (-) is the outgoing eikonal phase. Equation (28) ignores off-shell effects, whereas the energy dependence

of the FSI is included and a medium modified interaction is assumed as described in reference 11.

Optical Limit for Profile Functions

For ApA T >> 1, the optical limit of the profile functions occurring in the previous expressions may be used

(refs. 8 and 13). From reference 13 we find in the optical limit that

pA. (b,b') = exp{i Ix(b) - X* (b')]} (29)



wheretheeikonalphaseis

ApAT f d2q eiq'bFp(q) FT(q) fNN(q) (30)
x(b) -- 2wkn n 3

with F denoting the one-body form factor and fNN denoting the two-body scattering amplitude, which we
represent by

fNN -- aNN(a 4- i)kmN _½Bq2
e (31)4_

where aNN is the two-body tota] cross section. B is the two-body slope parameter, and a is the ratio of the

real part to the imaginary part of fNN(q = 0). For the inelastic terms, we write in the optical limit (ref. 13)

with

(2WkNN)2 a_ (b-s/+s')e- q'( - Y+S')fNN(q) fNtN(q ') (33)

Model for Nuclear Density Matrix

We next describe a local density approximation for the one-body density matrix. For a projectile nucleus

with Ap nucleons, the one-body density matrix is defined in terms of the complete nuclear wave function (_)
as (ref. 14)

p(r,r')---fdr2dr3,....drApqfl(r',r2,...,rAp)_(r, r2,...,rAp) (34)
d

The evaluation of equation (34) requiresknowledge of the complete nuclear wave function:however, in practice

a model isintroduced. In the Fermi gas model (ref.14),

p(r, r') = Po 3jl (kFIr -- r']) (35)
kFir -- r _

where k F is the Fermi momentum and Po is the density of nuclear matter. The Fermi gas model is known to

provide a poor representation of the density matrix: however, its form suggests the use of a local density mode]
where the density matrix factors are given as

p(r, r') _ p(y) n(x) (36)

with x = r - r I and y = 1 (r + rl), and where the one-body density is given by the diagonal part of the density
matrix

p(r) = p(r, r' -- r) (37)

Here. n(x) is the Fourier transform of the nucleon momentum distribution

f
n(x) j dp e ip'x n(p) (38)

where n(p) is defined by

n(p) = / dr dr' eip'x p(r, r') (39)
d

with normalization

n(p) dp(2 )3 1 (40)

The one-body density is reasonably well known from elastic electron scattering. The nucleon momentum

distribution at small to modest values of p is known from inclusive inelastic electron scattering. For large
values of p, the backward production of protons suggests that large enhancements occur because of correlation



effectsin contractto predictionsof single-particlemodelsandthat theenhancementsarelargelyindependent
of thenuclearmass(refs.15 17'J.Beforeintroducingphenomenologicalparameterizationsof n(p), we note

that by using equations (36) and (33), equation (19) can be written as

dN1

dk (27r)2 j

× fd2yp(Y)[ eft(b'x'y) 1] (41)
J

where k_ is the transverse part of k and k L is the longitudinal part of k 0. Equation (41) shows that the

production spectrum in the longitudinal direction corresponds closely to the internal momentum distribution

independent of the collision dynamics in the Glauber model, whereas the transverse spectrum is modified by
multiple scattering.

Haneishi and Fujita (ref. 17) have introduced

3

n(p) = no _ Ci e p2/2p_ (42)
i--1

where Ci and Pi are constants listed in table 1. The last term in equation (42) is expected to directly reflect

the nuclear correlations. In equation (42), Pl is related to the Fermi momentum by Pl = _f2/5kF. Values for

k F from experiments of Moinz e_ al. (ref. 18) are listed in table 2. For 12C we use a value for k F corresponding
to the matter radius of 1.69 fm.

Table 1. Parameters for Momentum Distribution

Model of Equation (42)
Table 2. Experimental Determination of Fermi

Momentum for Several Nuclei

i Pi, MeV/c Ci

500

1

0.03

0.003 (0.0002) a

aValue found empirically.

Nucleus

12C

40At

20spb

kF, MeV/c

184

251

265

Amado (ref. 19) has considered many body correlations by solving the Schr6dinger equation directly for the

case of delta-function potentials where, for large values of p, he finds

sinh( /p) (43)

An analysis of backward proton scattering supports the value 7 = 90 MeV/c independent of the nuclear mass.

We continue equation (43) to Small values of p by using

d ] (44)n(p) = no e-p2/2p + Osinh( /p)]

and consider several values for do below. We note that the normalization in equation (44) is given as

8

nO=[(27cp_)3/2+d°25@]-l(27r)3 (45)
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and for n(x) we find that

n(x) = no [(2_rp21)3/2e -p_z2/2 + --

7r4-_2d 0

x

sech2(rrT:C_tanh(TrTz_]

\ 2 / \ 2 /J
(46)

In figures 3, 4, and 5, we compare the models of equations (42) and (44) for 12C, 4°Ar, and 208pb, respectively.

For display, n(p) has been normalized to unity rather than to the condition given by equation (40). For a pure
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Figure 3. Logarithm of internal momentum distribution for

12C versus momentum for several models.

Figure 4. Logarithm of internal momentum distribution for

4°Ar versus momentum for several models.
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Oaussian model (do -- 0 in eq. (44)), the momentum distribution is vanishingly small above about 3 fm -1.

The model of equation (42) is shown using C3 -- 0.003 and a value of C3 = 0.0002 determined empirically, as

discussed below. Including the correlation term with no Gaussian component (dashed line) is seen to show a

large depletion of strength at small values of p in order to preserve the normalization condition. The use of

equation (44) with 0.01 < dO < 0.1 will provide a reasonable momentum distribution at small values of p and
account for some correlation strength at large values of p.

Results and Discussion

In figure 6 we show calculations for the momen-

turn distribution of produced protons in 12C on 12C

reactions at an energy of 1.028A GeV in the forward

direction. The first three terms in the series of equa-

tion (25) are shown corrected for the production of

protons only with the final-state interactions (FSI)
neglected. The invariant momentum distribution is

shown which is found by multiplying equation (25)
by the energy of the secondary proton. The calcu-

lations are made by neglecting the correlation term

(the third term) in equation (42). The leading-order

term is seen to dominate, but with important contri-
butions from the higher terms. The shape of the dis-

tribution for the higher order terms is similar to the

leading term except at high momentum values where

they fall off more rapidly. In figure 7 we compare
calculations which include the final-state interactions

using the same internal momentum distribution as

in figure 6. The absorptive effect of the FSI leads

to a decrease of about a factor of 2 in the momen-

turn distribution. This large decrease indicates the

importance of cascade effects of the knockouts with

the projectile fragments which must account for the
decrease in figure 7.

In figure 8 we compare calculations for proton

production from abrasion for several targets with
the experimental data from references 20 and 21 for
inclusive proton production. The calculations shown

by the solid line include the correlation contribution

in equation (42). However. the strength has been

adjusted to C3 -- 0.0002 from the suggested value

of C3 = 0.003 from Haneishi and Fujita (ref. 17)

because their value was found to be much too large
in the high-momentum region. The dashed lines in

figure 8 neglect the correlation term (do = 0). A

lO6

10 5

t/

Total

1

2

........ 3

lOo
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Figure 6. Calculations of invariant momentum distribution for

proton production from abrasion in 12C-12C collisions at

1.028A GeV. Shown are first three collision terms without
final-state interactions.
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Figure 7. Calculations of invariant momentum distribution for

proton production from abrasion in 12CJ2C collisions at
1.028A GeV with and without final-state interactions.
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Figure 8. Comparison of calculations with experiments of references 20 and 21 for proton production for 12C collisions on several

target nuclei at 1.028A GeV. Calculations include final-state interactions with and without correlation effects as described in
text.

treatment of phase space that is more accurate than

the Glauber model employed here may allow for
a larger correlation term: however, we note that

most of the cited calculations on backwards proton
production (refs. 15-17) neglect the absorptive ef-
fects that would cause some renormalization of their

results. The agreement between calculations and ex-

periments in figure 8 is fairly good except in the low-

momentum region where other processes will con-

tribute to the inclusive proton production. The
calculations shown include the production from the

target knockouts, but these make only a small con-

tribution at large momenta. The largest differences

in the high-momentum region occur for the IH tar-

get where we note that the experimental results are

obtained indirectly by using a CH2 target.

In figure 9 we compare calculations with exper-
iments for proton production in 12C-12C reactions

at 2.062A GeV. The agreement between calculations

is also good as in the lower energy data for the 12C

projectiles. In figure 10 we repeat the comparison
made in figure 9 shown in the rest frame of the pro-

jectile. Also shown for comparison are plots of the

internal momentum distribution times the proton en-

ergy normalized to the data. The comparison made
in figure 10 illustrates the modification of the too-

mentum distribution by the collision dynamics.
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Figure 9. Comparison of calculations with experiments of references 20 and 21 for proton production in 12C-12C collisions at

2.062A GeV.
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Figure 10. Comparison of calculations with experiments of references 20 and 21 for proton production in 12C-12C collisions at

2.062A GeV in projectile rest frame. Also shown is plot of En(p) for models discussed in test.

12



_:i• •

/:k

/! ii_iiiii

ii_iiii,

i!ili_ii!_

:, +

ill!i_,_

L :i

In figure 11 we show calculations of proton production in Ar-KC1 collisions at 0.8A GeV at a scattering
angle of 10° in comparison with the data of Nagamiya et al. (ref. 22). For calculations, the target is assumed

to be Ar, and the agreement is again good in the high-momentum region. At low values of momentum, other

contributions to the inclusive proton production, as discussed in the introduction of this report, are present
and have not been estimated here. Production mechanisms other than those from abrasion will become more

dominant at larger scattering angles. Finally, in figure 12 we show comparisons with the data of reference 231

for proton production at 5° from 40Ar projectiles interacting with Be and Cu targets.
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Figure 11. Comparison of calculations with experiments of reference 22 for proton production at 10 ° in 4°Ar-4°Ar collisions at

0.8A GeV. Data are for Ar-KCI and show calculations both with and without correlation term and protons from target.

1A vital comparison was also made with data found in an unpublished report by V. Perez-Mendez et al. (LBL-7278, Dep. of

Physics, Univ. of California, 1978).
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Figure 12. Comparison of proton production on 4°Ar-Cu and 4°Ar-Be collisions with production at 5°. Data are taken from

reference 23 for 1.8A GeV beams.

Concluding Remarks

The production of nucleons from heavy ion abrasion has been formulated by using a multiple-scattering

model. The resulting formalism allows for the physics of nuclear abrasion, which is important in describing
heavy ion fragmentation cross sections to be directly related to the inclusive yields of nucleons. Comparisons of

theory with experimental data were made for inclusive proton production at small angles, and good agreement
was found. The model comparisons indicate an important role for final-state interaction effects and the internal

momentum distribution of nucleons in describing nuclear fragmentation.

NASA Langley Research Center

Hampton, VA 23681-0001

August 25, 1994

H
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Appendix

Kinematical Phase Space and Inclusive Momentum Distribution

In this appendix we discuss the relationship of the multiple production terms of nucleons abraded from

the projectile to the kinematical phase space and also consider an approximation using the Glauber multiple-
scattering series in which energy conservation is ignored entirely.

The scattering amplitude for the heavy ion collision is related to the cross section by the phase space of

each particle that appears in the final state. We consider inclusive reactions in which a nucleon originating
in the projectile is measured. For simplicity, the final target state is not considered and we use closure on

these states with a single momentum vector denoted by Px to represent these states. The cross section is then
determined by

d_ (277)4 n
-- /3 EdPxdPF* _ I-I [dpj]5(Ei -Ef)5(pi-pf) ITfil 2 (A1)

x n-l j-1

where 3 is the relative projectile-target velocity, F* represents the prefragments, n is the number of nucleons

knocked out of the projectile in the overlap region with the target, and i and f denote the initial and final

states, respectively. The prefragment will decay through particle emission if sufficient energy is available. To
include the phase space of decay products of F*, we write

dPF* = dPF ]-I dpr (A2)
r=O

where r denotes the ions (if any) emitted in ablation. In considering nucleon production from ablation, we

would study Pr- We use the momentum-conserving delta function in equation (A1) to eliminate PF from
equation (A1).

We next consider using energy conservation in equation (A1). Working in the projectile rest frame, we
transform dPx to dq, where q = PT -- PX is the total momentum transfer in the collision, and we use the

energy-conserving delta function in equation (A1) to eliminate dqL , where qL is the longitudinal momentum
transfer. We then find

= (2 )4 dqTK dpj JTzf2 (A3)
x

where the phase space factor is defined as

1 -cgEf 1 ExEF.

/3
OqL /3 EF, (PT -- %) + EX pj cos Oj -- qL

The momentum distribution of nucleons from abrasion is then

i  Jflde7 = (27r)4 E dqT dpj YI dprKITfil 2 (A5)
dp x n=l j-2 r_0

which corresponds closely to equation (3) if we make the replacement

If energy conservation is ignored entirely, we would have K - 1. By using the participant-spectator arrangement
of the Glauber series discussed previously, the inclusive momentum distribution is shown to become

d_ d2bpAP-n(b) dkd---k-- (A7)

15



where

and

dNn dN1
d--k - _-[l - P(b)] n-1 (A8)

dN1 ,,-_-aK = 1 - P(b) (A9)

The result of equation (A8) indicates that the inclusive momentum distribution from abrasion essentially
follows the shape of the leading-order term in the approximations discussed because the absorptive factors in
equation (A7) change slowly with increasing n for Ap >> 1.
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